Кортизол и надпочечниковые андрогены
Биосинтез кортизола и надпочечниковых андрогенов
Стероидогенез
Главными гормонами коры надпочечников являются кортизол, андрогены и альдостерон.
Пути синтеза надпочечниковых стероидов были выяснены благодаря анализу ферментов стероидогенеза. Большинство этих ферментов принадлежит к семейству оксидаз Р450. Фермент P450scc (кодируемый геном CYP11А, расположенным на хромосоме 15) отщепляет боковую цепь холестерина. Фермент Р450с11 (кодируемый геном CYP11β1, расположенным на хромосоме 8) катализирует 1β-гидроксилирование 11-дезоксикортизола и 11-дезоксикортикостерона (ДОК) с образованием соответственно кортизола и кортикостерона в сетчатой и пучковой зонах. В клетках клубочковой зоны ген CYP11β2 (также локализованный на хромосоме 8) кодирует фермент Р450альдо (альдостеронсинтазу), который катализирует 11β-гидроксилирование, 18-гидроксилирование и 18-окисление 11-ОК, превращая его в кортикостерон и далее — в 18-гидрок-сикортикостерон и альдостерон. Все эти реакции протекают в митохондриях клеток. В эндоплазматическом ретикулуме фермент Р450с17 (кодируемый геном CYP17, расположенным на хромосоме 10) обладает 17α-гидроксилазной и 17,20-лиазной активностями. Здесь же фермент Р450с21 (кодируемый геном CYP21A2) гидроксилирует прогестерон и 17-гидроксипрогестерон по 21-му углеродному атому. Зβ-гидроксистероиддегидрогеназной и Δ5,4-изомеразной активностями обладает один и тот же микросомный фермент, не принадлежащий к семейству цитохрома Р450.
Зоны и стероидогенез
Из-за различия ферментов в клубочковой и двух внутренних зонах кора надпочечников функционирует как две железы, которые по-разному регулируются и секретируют разные гормоны. Так, в клубочковой зоне, продуцирующей альдостерон, отсутствует 17α-гидроксилаза, и поэтому невозможен синтез 17ос-гидроксипрегненолона и 17α-гидроксипрогестерона, являющихся предшественниками кортизола и надпочечниковых андрогенов. Синтез альдостерона клетками этой зоны регулируется ренин-ангиотензиновой системой и калием.
Пучковая и сетчатая зоны продуцируют кортизол, андрогены и небольшое количество эстрогенов. Эти зоны регулируются в основном АКТГ. В них не экспрессируется ген CYP11В2 (кодирующий Р450альдо), и поэтому превращение 11-ОК в альдостерон невозможно.
Поглощение и синтез холестерина
Синтез кортизола и андрогенов в пучковой и сетчатой зонах (как и синтез всех других стероидных гормонов) начинается с холестерина. Главным источником холестерина для надпочечников служат липопротеины плазмы, хотя холестерин синтезируется из ацетата и в самих надпочечниках. На долю холестерина, поступающего с ЛПНП, приходится 80% его запасов в надпочечниках. При стимуляции этих желез стероиды быстро синтезируются из небольшого количества свободного холестерина. Одновременно активируется гидролиз запасенных эфиров холестерина, усиливается захват липопротеинов из плазмы и ускоряется синтез холестерина из ацетата. Эти быстрые реакции опосредуются белком острой регуляции стероидогенеза (StAR) — митохондриальным фосфопротеином, который ускоряет перенос холестерина с наружной мембраны митохондрий во внутреннюю. Мутации гена StAR лежат в основе врожденной липоидной гиперплазии надпочечников, уже с рождения характеризующейся тяжелой недостаточностью кортизола и альдостерона.
Метаболизм холестерина
Реакцией, лимитирующей скорость стероидогенеза в надпочечниках, является превращение холестерина в прегненолон, и именно эта реакция является главным объектом влияния АКТГ. Она протекает в митохондриях и включает два гидроксилирования с последующим отщеплением боковой цепи холестерина. Все эти превращения катализируются одним ферментом — CYP11А. Каждый этап требует присутствия кислорода и пары электронов, донором которых служит НАДФН. Флавопротеин адренодоксинредуктаза переносит эти электроны на железосерный протеин адренодоксин и с него на CYP11А. Как адренодоксинредуктаза, так и адренодоксин принимают участие и в реакции, катализируемой CYP11B1. Перенос электронов на микросомный цитохром Р450 происходит с участием Р450-редуктазы (другого флавопротеина). Образовавшийся прегненолон для дальнейших превращений должен покинуть митохондрию.
Синтез кортизола
Синтезу кортизола предшествует 17α-гидроксилирование прегненолона с образованием 17α-гидроксипрегненолона под действием фермента CYP17 в гладком эндоплазматическом ретикулуме. Затем 5,6-двойная связь в 17α-гидроксипрегненолоне трансформируется в 4,5-двойную связь под действием ферментного комплекса Зβ-гидроксистероиддегидрогеназы: Δ5,4-оксостероидизомеразы, который также локализован в гладком эндоплазматическом ретикулуме. Альтернативная (менее значимая) реакция, протекающая в пучковой зоне, сводится к превращению прегненолона в прогестерон и далее — в 17α-гидроксипрогестерон.
Следующий этап, который опять-таки происходит в микросомах и катализируется CYP21A2, заключается в 21-гидроксилировании 17α-гидроксипрогестерона с образованием 11-дезоксикортизола. Это соединение подвергается 11β-гидроксилированию в митохондриях (CYP11B1) с образованием кортизола. В пучковой и сетчатой зонах образуются также 11-ОК, 18-гидроксидезоксикортикостерон и кортикостерон. Однако, как отмечено выше, отсутствие в этих зонах митохондриального фермента CYP11B2 исключает возможность синтеза в них альдостерона. В базальных условиях (т.е. в отсутствие стресса) скорость секреции кортизола колеблется от 8 до 25 мг (22-69 мкмоль), составляя в среднем 9,2 мг (25 мкмоль) в сутки.
Синтез андрогенов
Образование надпочечниковых андрогенов из прегненолона и прогестерона требует предварительного 17α-гидроксилирования (CYP17), которое невозможно в клубочковой зоне. Наибольшее количество андрогенов образуется в результате превращения 17α-гидроксипрегненолона в соединения с 19 углеродными атомами — ДГЭА и ДГЭА-сульфат. Микросомная 17,20-десмолаза (CYP17) отщепляет от 17α-гидроксипрегненолона его двух-углеродную боковую цепь в 17-м положении, приводя к образованию ДГЭА, который содержит кетогруппу у С17. ДГЭА под действием сульфокиназы превращается в ДГЭА-сульфат (реакция обратима). Другой надпочечниковый андроген, андростендион, образуется в основном из ДГЭА (под действием CYP17) и, возможно, из 17α-гидроксипрогестерона (также под действием CYP17). Андростендион может превращаться в тестостерон, хотя надпочечники секретируют минимальные количества последнего. Сами по себе надпочечниковые андрогены (ДГЭА, ДГЭА-сульфат и андростендион) обладают очень слабой андрогенной активностью, и маскулинизирующее влияние этих соединений обусловлено их периферическим превращением в более активные андрогены — тестостерон и дигидротестостерон. ДГЭА и ДГЭА-сульфат секретируются надпочечниками в больших количествах, чем андростендион, но с качественной стороны последний играет более важную роль, поскольку легче превращается на периферии в тестостерон. Недавно показано, что синтез некоторых стероидных гормонов происходит также в нервной ткани и сердце, где они действуют, по-видимому, как паракринные или аутокринные факторы. Ферменты стероидогенеза (например, Зβ-гидроксистероиддегидрогеназа и ароматаза) экспрессируются во многих тканях.
Регуляция секреции
Секреция КРГ и АКТГ
АКТГ, тропный гормон для пучковой и сетчатой зон надпочечников, является основным регулятором продукции кортизола и надпочечниковых андрогенов. Однако в регуляции этих процессов играют роль и вещества, вырабатываемые в самих надпочечниках — нейротрансмиттеры, нейропептиды и оксид азота. Секреция АКТГ, в свою очередь, регулируется ЦНС и гипоталамусом, где вырабатываются нейротрансмиттеры, кортикотропин-рилизинг гормон (КРГ) и аргинин-вазопрессин (АВП). Нейроэндокринный контроль секреции КРГ и АКТГ осуществляется посредством трех механизмов.
Влияние АКТГ на кору надпочечников
Уже в первые минуты после введения АКТГ увеличивается уровень стероидов в плазме. В надпочечниках возрастает синтез РНК, ДНК и белка. Хроническая стимуляция АКТГ приводит к гиперплазии и гипертрофии коры надпочечников, и наоборот — дефицит АКТГ тормозит стероидогенез и сопровождается атрофией коры надпочечников, снижением веса этих желез и содержания белка и нуклеиновых кислот в них.
АКТГ и стероидогенез
АКТГ с высоким сродством связывается со своими рецепторами на плазматической мембране клеток коры надпочечников, что приводит к активации аденилатциклазы и увеличению в клетках количества цАМФ. Последний, в свою очередь, активирует внутриклеточные протеинкиназы и StAR. Возрастает активность холестеринэстеразы, тормозится синтез эфиров холестерина и увеличивается захват липопротеинов корой надпочечников. Все это ускоряет образование свободного холестерина и его взаимодействие с ферментом, отщепляющим боковую цепь (P450scc, или CYP11A1) с образованием А5-прегненолона. Эта реакция, как уже отмечалось, лимитирует скорость стероидогенеза.
{module директ4}
Нейроэндокринная регуляция
Секреция кортизола строго контролируется АКТГ, и концентрация кортизола в плазме меняется параллельно уровню АКТГ. Нейроэндокринная регуляция коры надпочечников складывается из трех механизмов: 1) регуляции эпизодической секреции и суточного ритма; 2) реакции гипоталамо-гипофизарно-надпочечниковой (ГГН) системы на стресс; 3) торможения секреции АКТГ кортизолом по механизму обратной связи.
- Суточный ритм. На эпизодическую секрецию кортизола накладывается суточный ритм, определяемый ЦНС, которая регулирует количество и амплитуду секреторных выбросов КРГ и АКТГ. Секреция кортизола, низкая в поздние вечерние часы, продолжает снижаться в первые часы сна. Затем она начинает увеличиваться, но после пробуждения вновь падает. На период максимальной секреции кортизола приходится примерно половина общего суточного его количества. На фоне постепенного снижения секреции кортизола в дневные часы наблюдаются пики меньшей амплитуды, связанные с приемом пищи и физической активностью. Динамика секреции кортизола может значительно различаться у разных людей и даже у одного и того же человека в зависимости от характера сна, цикла свет-темнота и сроков приемов пищи. Суточный ритм секреции меняется также при физическом (тяжелые заболевания, хирургические операции, травмы или голодание) и психологическом стрессе (страх, эндогенная депрессия, маниакальная стадия маниакально-депрессивного психоза). Он нарушается и при патологических процессах в ЦНС и гипофизе, синдроме Кушинга, изменении метаболизма кортизола, хронической почечной недостаточности и алкоголизме. Ципрогептадин, обладающий антисеротонинергическим эффектом, подавляет суточный ритм секреции кортизола, но другие лекарственные вещества обычно не меняют его.
- Реакция на стресс. Уровни АКТГ и кортизола в плазме повышаются уже в первые минуты хирургических операций или при падении уровня глюкозы в плазме; длительный стресс полностью устраняет суточный ритм секреции этих гормонов. Реакция на стресс начинается в ЦНС и сопровождается усиленной секрецией КРГ и АКТГ. Предварительное введение глюкокортикоидов, как и их усиленная эндогенная продукция при синдроме Кушинга, блокирует реакции АКТГ и кортизола на стресс. Напротив, после адреналэктомии реакция АКТГ на стресс усиливается. В регуляции системы ГГН принимает участие и иммунная система. Например, интерлейкин-1 (ИЛ-1) стимулирует секрецию АКТГ, а кортизол блокирует синтез ИЛ-1.
- Ингибирование по механизму обратной связи. Третий механизм регуляции секреции АКТГ и кортизола заключается в ингибировании их секреции глюкокортикоидами, которые по механизму отрицательной обратной связи действуют на гипоталамус и гипофиз. Этот их эффект реализуется двумя путями.
Быстрое торможение секреции АКТГ зависит от скорости повышения уровня глюкокортикоидов, но не от их дозы. Реакция возникает быстро (в первые минуты), продолжается недолго (менее 10 минут) и опосредуется, по-видимому, мембранными, а не классическими цитозольными рецепторами глюкокортикоидов. Отсроченное и более длительное подавление секреции АКТГ зависит как от времени действия глюкокортикоидов, так и от их дозы. При длительном введении глюкокортикоидов уровень АКТГ продолжает снижаться и теряет чувствительность к стимулирующим воздействиям. В конце концов это приводит к полному прекращению секреции КРГ и АКТГ и атрофии пучковой и сетчатой зон коры надпочечников. Такое подавление системы ГГН реализуется, по-видимому, через классические глюкокортикоидные рецепторы.
Влияние АКТГ на продукцию андрогенов
Продукция надпочечниковых андрогенов у взрослых людей также регулируется АКТГ. Суточный рим секреции ДГЭА и андростендиона совпадает с таковым АКТГ и кортизола. АКТГ быстро повышает уровни ДГЭА и андростендиона в плазме, а глюкокортикоиды снижают их содержание. ДГЭА-сульфат метаболизируется медленно, и поэтому его уровень в плазме на протяжении суток остается стабильным. Долгое время предполагали существование особого гипофизарного гормона, регулирующего секрецию надпочечниковых андрогенов, но это так и не было подтверждено.
Метаболизм кортизола и надпочечниковых андрогенов
В ходе своего метаболизма эти стероиды теряют активность и, образуя конъюгаты с глюкуроновой и серной кислотой, приобретают водорастворимость. Неактивные конъюгированные соединения легче выводятся с мочой. Метаболизм и конъюгирование стероидов происходит главным образом в печени; с мочой выводится 90% таких метаболитов.
Метаболизм и экскреция кортизола
До своего выведения с мочой кортизол претерпевает различные превращения. В неизмененном виде выводится менее 1% секретируемого кортизола.
Превращения в печени
Среди метаболических превращений кортизола в печени наиболее важным, с количественной точки зрения, является его необратимая инактивация под действием Δ4-редуктазы, которая восстанавливает 4,5-двойную связь кольца А. Продукт этой реакции, дигидрокортизол, под действием 3-гидроксистеро-иддегидрогеназы превращается в тетрагидрокортизол. Значительные количества кортизола подвергаются также действию 11β-гидроксистероиддегидро-геназы, превращаясь в биологически неактивный кортизон, из которого под влиянием упомянутых выше ферментов образуется тетрагидрокортизон. Тетрагидрокортизол и тетрагидрокортизон могут превращаться в кортоевые кислоты. Все эти превращения обусловливают экскрецию примерно равных количеств метаболитов кортизола и кортизона. В результате метаболизма кортизола и кортизона образуются также кортолы и кортолоны и (в меньшей степени) другие соединения (например, 6β-гидрокортизол).
Конъюгирование в печени
Более 95% метаболитов кортизола и кортизона образуют в печени конъюгаты с остатками глюкуроновой и серной кислот и в таком виде вновь поступают в кровь, откуда и выводятся с мочой. Количественно большее значение имеет конъюгирование с глюкуроновой кислотой (через гидро-ксильную группу в Зα-положении).
Изменения клиренса и метаболизма
На метаболизм кортизола влияют многие условия. В детском и старческом возрасте он замедлен. Хронические заболевания печени сопровождаются снижением экскреции метаболитов кортизола с мочой, хотя его концентрация в плазме остается нормальной. При гипотиреозе метаболизм кортизола замедляется, и его экскреция с мочой снижается. Для гипертиреоза характерны противоположные сдвиги. Клиренс кортизола уменьшается при голодании и нервной анорексии, а также при беременности (вследствие повышения уровня КСГ). У новорожденных в 6β-гидрокортизол превращается большее количество кортизола. То же происходит при беременности, под влиянием эстрогенов, при заболеваниях печени и других тяжелых хронических болезнях, а также под влиянием лекарственных средств, индуцирующих синтез печеночных микросомных ферментов (барбитуратов, фенитоина, митотана, аминоглутетимида и рифампицина). Физиологическое значение таких изменений невелико. Однако они сопровождаются снижением экскреции 17-гидроксикортикостероидов с мочой. Перечисленные состояния и лекарственные средства сильнее влияют на метаболизм синтетических глюкокортикоидов и, ускоряя их метаболизм и клиренс, могут сказываться на их концентрации в плазме.
Кортизол-кортизоновый шунт
Обмен натрия на калий в дистальных отделах нефрона регулируется альдостероном. Этот эффект опосредуется минералокортикоидными рецепторами почек. В условиях in vitro сродство глюкокортикоидных и минералокортикоидных рецепторов к кортизолу одинаково. Однако in vivo уже небольшие сдвиги в уровне альдостерона изменяют натрий-калиевый обмен в почках, тогда как свободный и биологически активный кортизол лишен такого эффекта, несмотря на то что его концентрация в крови намного выше концентрации альдостерона. Этот кажущийся парадокс объясняется действием внутриклеточного фермента — 11β-гидроксистероиддегидрогеназы 2-го типа (11β-HSD2), которая превращает кортизол в неактивный кортизон и тем самым предохраняет минералокортикоидные рецепторы от взаимодействия с кортизолом. Однако при очень высоком уровне кортизола в крови (например, при тяжелом синдроме Кушинга) этот защитный механизм преодолевается. Активация минералокортикоидных рецепторов кортизолом приводит к увеличению внеклеточного объема, артериальной гипертонии и гипокалиемии. Активное вещество лакрицы (глициризиновая кислота) ингибирует 11β-HSD2 и обеспечивает кортизолу свободный доступ к минералокортикоидным рецепторам почек, обусловливая гипокалиемию и повышение артериального давления. Кроме того, в некоторых тканях присутствует изофермент 11β-гидроксистероиддегидрогеназы (11β-HSD1), превращающий неактивный кортизон в кортизол. Экспрессия этого фермента в коже объясняет эффективность кортизоновых мазей. Важнее, что 11β-HSD1 экспрессируется и в печени. Таким образом, если в почках кортизол инактивируется, превращаясь в кортизон, то в печени возможен обратный процесс. Экспрессия 11β-HSD1 в жировой ткани может объяснять развитие абдоминального ожирения при метаболическом синдроме, при котором уровень кортизола в крови не повышен.
Метаболизм и экскреция надпочечниковых андрогенов
В ходе метаболизма надпочечниковых андрогенов происходит либо их распад и инактивация, либо превращение в более активные соединения — тестостерон и дигидротестостерон. В самих надпочечниках ДГЭА легко превращается в ДГЭА-сульфат, которому принадлежит первое место среди секретируемых этими железами андрогенов. В печени и почках ДГЭА также превращается в ДГЭА-сульфат или в Δ4-андростендион. ДГЭА-сульфат выводится почками либо в неизмененном виде, либо превращается в 7α- и 16α-гидроксилированные производные, а после восстановления в 17β-положении — в Δ5-андростендиол и его сульфат. Андростендион превращается либо в тестостерон, либо (после восстановления 4,5-двойной связи) в этиохоланолон или андростерон, из которых в результате восстановления в 17α-положении образуются соответственно этиохоландиол и андростендиол. В тканях-мишенях андрогенов тестостерон восстанавливается в 5β-положении, превращаясь в дигидротестостерон, который после восстанавления в Зα-положении образует андростендиол. Метаболиты андрогенов в виде глюкуронидов или сульфатов выводятся с мочой.